

EEL3701

Review of Number Systems

Our decimal (base 10 or radix 10) number system is positional.

Ex: $9437_{10} = 9x10^3 + 4x10^2 + 3x10^1 + 7x10^0$ We have a total of (R=10) digits, i.e., $\{0,1,2,3,4,5,6,7,8,9\}$; where R = radix Similarly for R=2, 8, 16; R=2¹ is called **Binary**; R=2³ is called **Octal**; R=2⁴ is called **Hexadecimal** (or **Hex**) For R > 10 we need additional symbols, e.g., for R=16 we need 6 additional symbols 0,1,2,3,4,5,6,7,8,9 and A,B,C,D,E,F for 10-15

University of Florida, EEL 3701 – File 06 © Drs. Schwartz & Arroyo

y of Florida, EEL 3701 – File 00 Drs. Schwartz & Arrovo

For example,

ida, EEL 3701 – File (hwartz & Arrovo

3

EEL3701 **Review of Number Systems** $123_{10} = 1x10^2 + 2x10^1 + 3x10^0$ $123_8 = 1x8^2 + 2x8^1 + 3x8^0$ or $123_8 = 83_{10}$ $123_{16} = 1x16^2 + 2x16^1 + 3x16^0$ or $123_{16} = 291_{10}$

EEL3701 Review of Number Systems

Fractions are also represented positionally as weighted negative powers of the radix or base. Ex: $0.125_{10} = 0x10^{0} + 1x10^{-1} + 2x10^{-2} + 5x10^{-3}$ Thus, for example, $0.125_8 = 0x8^0 + 1x8^{-1} + 2x8^{-2} + 5x8^{-3}$

 $0.125_{16} = 0x16^0 + 1x16^{-1} + 2x16^{-2} + 5x16^{-3}$

1

=-k

In general, if R>1, any rational number N can be represented in a power series given by:

$$N = (d_4, d_3, d_2, d_1, d_0, d_{-1}, d_{-2}, d_{-3})_R$$

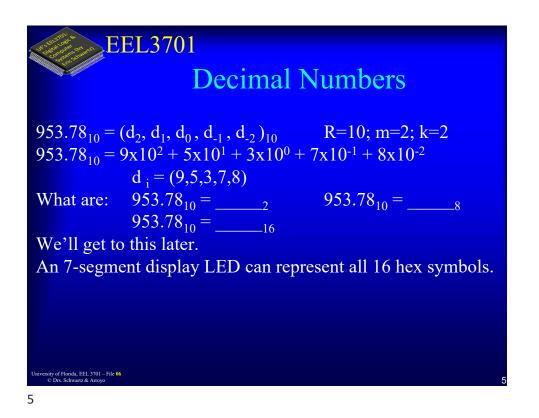
N=d₄xR⁴ + d₃xR³ + d₂xR² + d₁xR¹ + d₀ + d₋₁xR⁻¹ + d₋₂xR⁻² + d₋₃xR⁻³

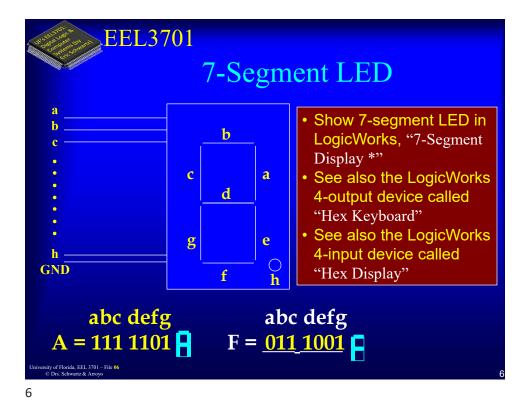
m∑ d.Rⁱ \mathbf{m} = # of digits in the integer part - 1 **k** =# of digits in the fractional part

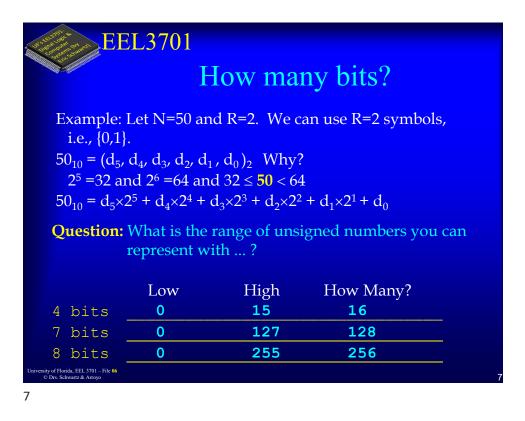
University of Florida, EEL 3701 – File 06 © Drs. Schwartz & Arroyo

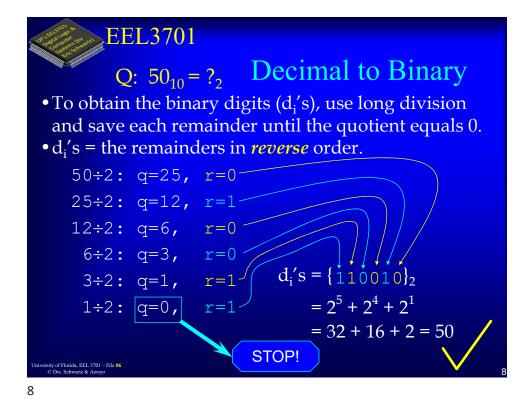
4

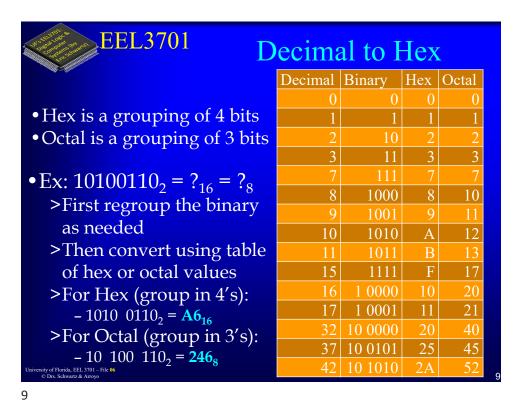
N =



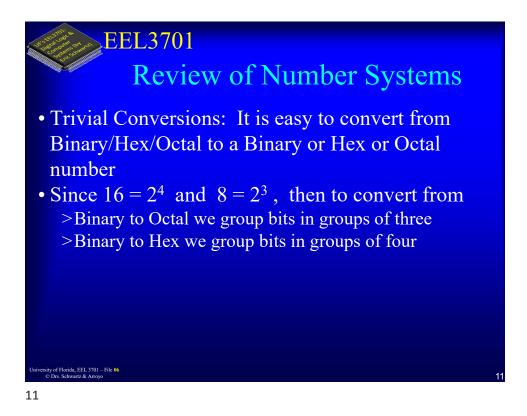








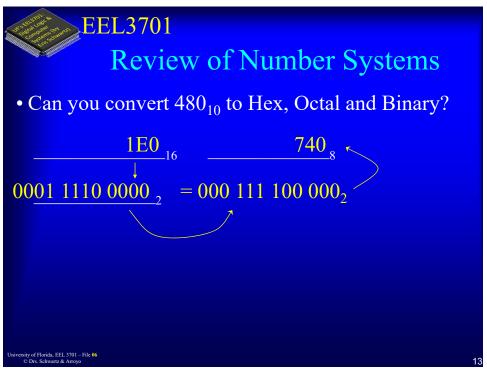
EEL3701 Decimal to Hex • Can convert to hex or octal using the **same** technique $50_{10} = X_{16}$? R = 16; $50 \div 16: q = 3, r = 2, 3 \div 16: q = 0, r = 3$ so $50_{10} = 32_{16}$ Check: $3 \times 16^{1} + 2 \times 16^{0} = 48 + 2 = 50!$ $50_{10} = X_8$? R = 8; $50 \div 8$: q = 6 , r = 2 , 6 $\div 8$: q=0, r=6 . So $50_{10}=62_8$ Check: $6 \times 8 = 48$ 48 + 2 = 50!Now $32_{16} = 0011\ 0010 = 1x2^5 + 1x2^4 + 0x2^3 + 0x2^2 + 1x2^1$ =32+16+2 = 50 1 Grouping in 3 bits each $32_{16} = 00\ 110\ 010 = 062_8 = 62_8$ Therefore converting **from Hex** to Octal or to Binary is **Trivial**! Example: $126_{16} = 0001 0010 0110_2$? = <u>446</u>₈? ity of Florida, EEL 3701 – File 06 10



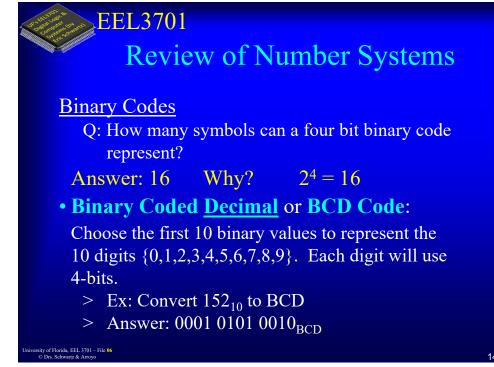
EEL3701 Review of Number Systems Ex: $1010100_2 \rightarrow 10 \ 101 \ 100_2 \rightarrow 254_8$ Ex: $1010100_2 \rightarrow 1010 \ 1100_2 \rightarrow AC_{16}$ • It's easier to convert Dec \rightarrow Hex \rightarrow Bin then Dec \rightarrow Bin directly Ex: $100_{10} = \{100 \div 16 \rightarrow q=6; r=4 \ 6 \div 16 \rightarrow q=0; r=6\} = 64_{16}$ $64_{16} = 0110 \ 0100_2 = 144_8 = 64 + 4*8 + 4 = 100$ • From above you can also see that it may be easier to convert Bin \rightarrow Hex \rightarrow Dec (or Bin \rightarrow Oct \rightarrow Dec) then Bin \rightarrow Dec directly

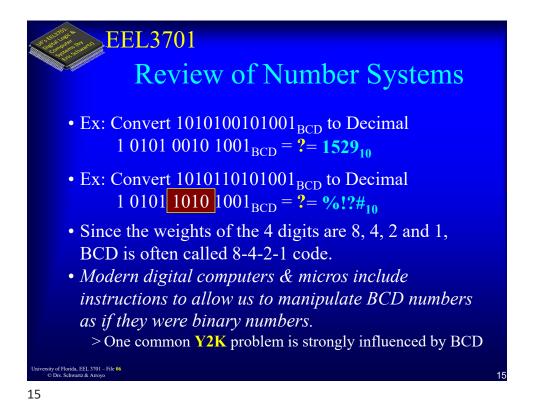
University of Florida, EEL 3701 – File 06 © Drs. Schwartz & Arroyo

1



13





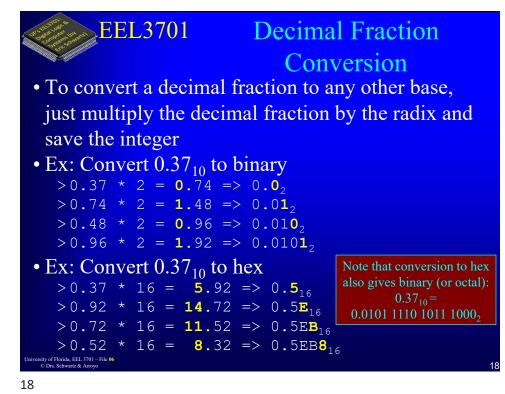
EEL3701 Addition, Subtraction, Multiplication

- Binary Math: We can manipulate Binary, Octal and Hexadecimal numbers like decimal numbers with respect to: addition, subtraction, multiplication and division.
- Examples:

		Dec		Dec		Dec
	0101	5	1000	8	1010	10
+	1101	+ <u>13</u>	- <u>0010</u>	<u>-2</u>	× <u>0011</u>	× 3
1	0010	18	0110	6	1010	30
					1 010	
11.1 S. 61	CI 11 EET 2701 ET 44				1 1110	
	Florida, EEL 3701 – File 06 Schwartz & Arroyo					

J.	EEL3701 Division with Binary Numbers							
	• Example: 11010 ₂ ÷100 ₂ = ?							
	100/11010	1 100/11010 - <u>100</u> 01010	Answer= 110.1_2					
Unive	$ \begin{array}{r} 11 \\ 100/11010 \\ -100 \\ 101 \\ -100 \\ 010 \\ niy of Florida, EEL 3701 - Flic 66 \\ C Drs. Schwatz & Arroyo \end{array} $	$ \begin{array}{r} 110 \\ 100 \\ -100 \\ 101 \\ -100 \\ 101 \\ -100 \\ 010 \end{array} $	Answer= 110_2 R10_2 <i>Dec</i> 6 R2 4/26 -24 2 $26 \div 4 = 6 \text{ R2}$ 17					

17



University of Florida, EEL 3701 – File 06 © Drs. Schwartz & Arroyo

Math

Signed Number Representations

- >Signed-Magnitude: Treats the most significant bit (MSB) as the sign of the number (0 = +, 1 = -)
- **One's Complement:** Changes every bit from 0 to 1 and 1 to 0 (for negative numbers)
- >Two's Complement: One's Complement + 1

EEL3701

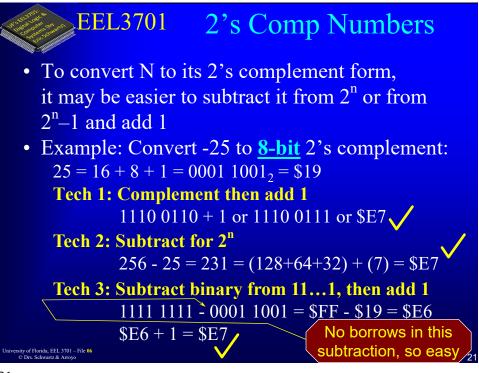
Negative Binary Numbers

• A <u>4-bit</u> 2's complement number $d_3d_2d_1d_0$ has value > $\overline{(d_3d_2d_1d_0)_{4\text{-bit 2's comp}}} = d_3 \times (2^3) + d_2 \times 2^2 + d_1 \times 2^1 + d_0 \times 2^0$

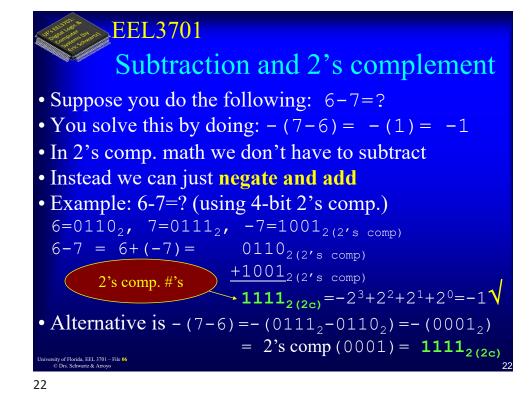
• A <u>3-bit</u> 2's complement number d₂d₁d₀ has value $>(d_2d_1d_0)_{3 \text{ bit 2's comp}} = d_2 \times -(2^2) + d_1 \times 2^1 + d_0 \times 2^0$

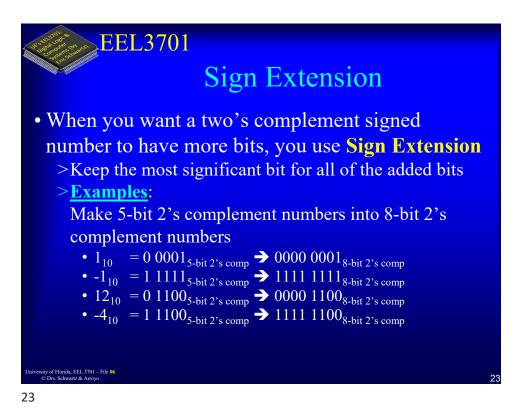
19

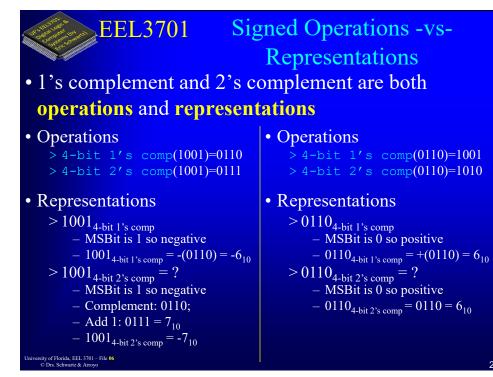
EEL3701 Signed Numbers Examples of positive and negative number representations, using only 4 bits Decimal Sign Mag. 1's Compl. 2's Compl. 3 0011 0011 0011 -3 1011 1101 1100 7 0111 0111 0111 -7 1111 1000 1001 9 garbage garbage garbage Note: Given an n-bit binary number N • $N + N_{1's \text{ compl}} = 1111 \dots 111 = 2^n - 1 \text{ (n ones)}$ • $N + N_{2's \text{ compl}} = 1 0000 \dots 000 = 2^n$ (a 1 followed by n zeros) of Florida, EEL 3701 – File 00

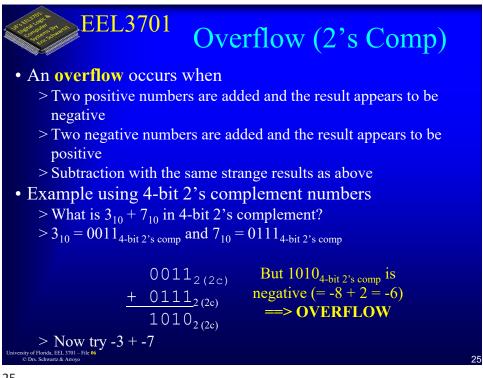


21

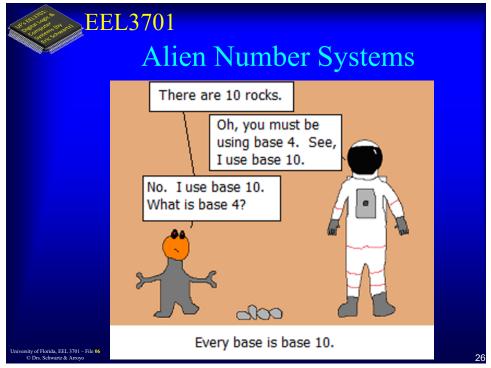








25



University of Florida, EEL 3701 – File 06 © Drs. Schwartz & Arroyo

